skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moutouama, Jacob K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Global climate change has triggered an urgent need for predicting the reorganization of Earth’s biodiversity. For dioecious species (those with separate sexes), it is unclear how commonly unique climate sensitivities of females and males could influence projections for species-level responses to climate change. We developed demographic models of range limitation, parameterized from geographically distributed common garden experiments, with females and males of a dioecious grass species (Poa arachnifera) throughout and beyond its range in the south-central U.S. We contrasted predictions of a standard female-dominant model with those of a two-sex model that accounts for feedbacks between sex ratio and vital rates. Both model versions predict that future climate change will induce a poleward shift of niche suitability beyond current northern limits. However, the magnitude of the poleward shift was underestimated by the female-dominant model because females have broader temperature tolerance than males but become mate-limited under female-biased sex ratios, which are forecasted to become more common under future climate. Our results illustrate how explicitly accounting for both sexes can enhance population viability forecasts and conservation planning for dioecious species in response to climate change. 
    more » « less
    Free, publicly-accessible full text available May 27, 2026
  2. ABSTRACT Predicting the effects of climate change on plant and animal populations is an urgent challenge for understanding the fate of biodiversity under global change. At the surface, quantifying how climate drives the vital rates that underlie population dynamics appears simple, yet many decisions are required to connect climate to demographic data. Competing approaches have emerged in the literature with little consensus around best practices. Here we provide a practical guide for how to best link vital rates to climate for the purposes of inference and projection of population dynamics. We first describe the sources of demographic and climate data underlying population models. We then focus on best practices to model the relationships between vital rates and climate, highlighting what we can learn from mechanistic and phenomenological models. Finally, we discuss the challenges of prediction and forecasting in the face of uncertainty about climate‐demographic relationships as well as future climate. We conclude by suggesting ways forward to build this field of research into one that makes robust forecasts of population persistence, with opportunities for synthesis across species. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026